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Abslrsct. 
under two important aspects: the behaviour of the energy 
under coordinate transformations and its general 
definition in the presence of external gravitational and 
electromagnetic fields. On the basis of energy conservation 
and a non-relativistic approximation it is argued that only 
the zeroth component of the covariant 'generalized 
momentum should be called 'energy'. 

The relativistic concept of energy is discussed 

1. introduction 

The concepts of mass and energy in classical relativistic 
physics, symbolized by Einstein's relation E = mc', 
are still discussed controversially in their historical, 
pedagogical and theoretical aspects, as can be seen 
from the large number of recent contributions (Adler 
1987, Feigenhaum and Mermin 1988, Fadner 1988, 
Okun 1989, Rindler 1990, Strnad 1991). The purpose 
of this article is to remark on two aspects of the 
concept of energy that so far have not been fully 
estimated in the author's opinion. The first aspect is 
the behaviour under coordinate transformation; here 
we conclude that the energy should be defined as the 
zeroth component of the covariant vector of the 
generalized momentum. The second is the energy o f a  
particle in a gravitational field: here we arrive at the 
general conclusion E # mc2 

2. The theoretical basis 

Okun (1989) already notes that the mass (he means 
only the rest mass or proper mass) is a relativistic 
invariant, whereas the energy transforms as a com- 
ponent of a 4-vector. Hence we can have Eo = mc' as 
a relation valid only in the rest system of a body. We 
look a t  this as an example of the general principle that 
any physical quantity is well defined only if its trans- 
formation properties under coordinate changes are 
specified. For relativistic physics this means that we 

Zusamneafassuag. Das relativistische Energiekonzepl 
wird unter zwei wichtigen Aspekten diskutiert: Das 
Verhalten der Energie unler Kaordinatentransformationen 
und ihre allgemeine Definition in Anwesenheit eines 
iukren Gravitations- und elektromagnetischen Feldes. 
Aufgrund von Energieerhaltung und der 
nichtrelativistischen Approximation wird argumentiert, 
daB nur die nullte Komponente des kovarianten 
'verallgemeinerten' Impulses as 'Energie' bezeichnet 
werden sollte. 

have to specify whether a quantity is a scalar, a com- 
ponent o f a  covariant or contravariant vector, a tensor 
of certain rank etc. We will therefore specify this 
property explicitly for all quantities involved in the 
following considerations. Then we start our consider- 
ations at the level of the covariant Lagrangian for a 
charged massive particle. We think that a generally 
accepted version is, apart from sign conventions, 
given by 

5 ,  

'0 
9 = dr(mcJY(r)g, , (x(r ) ) i ' ( r )  

+ 9Ap(x(T))Y(T)) (1) 

where, by definition, we have m is the invariant, 
constant (rest) mass; q is the invariant, constant 
charge; c is the invariant, constant velocity of light; 7 
is an invariant parameter (the proper time); xp are 
the coordinates of the four-dimensional spacetime, 
p = 0, I ,  2,3; X"(T) is the position of the particle, 
parametrized by 7; i P ( r )  = (d/dr)X"(r) the covariant 
4-velocity of the particle; A,(x)  is the covariant, 
spacetime-dependent 4-potential of the electromag- 
netic field; g,.(x) is the second rank covariant tensor 
of the metric o r  gravitational field; we denote by 
'I,," = diag(l, - I ,  - I ,  - I )  the Minkowskian metric. 

We employ the concept of a test particle: the exter- 
nal fields are assumed to he given independently ofthe 
motion of the particle considered. As we d o  not con- 
sider the generation of the gravitational field we d o  
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not have lo specify whether spacetime is curved or 
flat, this has an influence only on the admissible set of 
coordinate transformations. The equations of motion 
follow from ( I )  by Hamilton’s variational principle, 
they are the Euler-Lagrange equations 

These are four equations for the components of the 
covariant vector 62/62(1). In order that the 
parameter I indeed is the proper time we have to 
restrict the solutions of (2) to those paths with 

Y(I)g&(I))X”(r) = ? (3) 
We note that both quantities are scalars, the constancy 
of the LHS of (3) follows from (2). This restriction may 
he built into the Lagrangian (see e.g. Doughty (1990) 
for a modem treatment). 

3. Two definltlons of the energy 

We note that the (rest-)mass is introduced as a 
constant whereas the energy so far is not part of this 
description. Thus we have to add a definition of the 
energy in terms of the quantities already defined. Now 
it is the essential point of this paper that there are 
two candidates for this definition. The conventional 
definition of the 4-momentum, of which E/c is to be 
the zeroth component, is 

f(r) = m y ( [ )  (44 
which defines a contravariant vector. On the other 
hand there is the definition of the so-called ‘generalized‘ 
momentum 

6 9  PJr) = ~ 

6iq.r) 

that defines a covariant vector. It is now our point 
that we want to argue that in the general context 
including a gravitational field only the quantity Poc 
may justly be called the energy of the particle. 

4. Energy conservation and Newtontan 
approxlmatlon 

To see the difference between pQ and Po we need the 
explicit equations of motion. From its definition we 
have 

( 5 )  P, = mg,..? + qAq. 
The Euler-Lagrange equations read, using (3) 

a J 
a*. a*. P r = f m F $ - g g , i + q , V - A A .  

Equations ( 5 )  and (6) may be combined lo yield the 
more familiar equation 

with the Christoffel symbols rEA and the electromag- 
netic field tensor FxA. We now see that whenever the 
external fields are time independent the quantity Po is 
conserved-lhis immediately follows from (2bwhereas 
p‘ is not. Since energy conservation is at the basis of 
all theoretical physics we may only say from Poc that 
it is the conserved (total) energy of the particle. This 
becomes even clearer in a non-relativistic approxi- 
mation of Po and p‘. We introduce the non-covariant 
coordinate velocity 

with 

(9) 

which follows from (3). In a weak gravitational field 
with potential CP the tensor g,, is specified by g, = 
1 + 2CP/?, g, = - 1, we then have 

(loo) 
mc’g, 

= J- + qAQc 

and 

( 1 Ob) 
m? 

p’c = myc’ = J3’ 
This leads to the non-relativistic approximations 

Poc z m? + tmv’ + mCP + qA,c 

p’c z m? + ;mv2 - m a .  

(!la) 

and 

( IW 
This shows that the non-relativistic limit of Poc indeed 
is the total non-relativistic energy of the particle, 
including rest energy, kinetic and potential energy, 
whereas Poc is the diKerence between the rest and 
kinetic energy and the potential energy in the gravi- 
tational field, hence it should not be called ‘energy’, 
which is obviously misleading since it has no particu- 
lar meaning in the concept of energy. We moreover 
see that there is only one ‘energy’ in the general 
relativistic context, given by Pot, since this cannot be 
split into a kinetic and potential part in the presence 
of a gravitational field. These different terms belong 
to the Newtonian theory. 

5. Conclusion 

Following Einstein (1969) himself and many other 
authors (Adler 1987, Fadner 1988, Okun 1989) we 
conclude that it is the contribution of the rest energy 
m? to the total energy that is the essence of Einstein’s 
Eo = mc’. But from general principles it follows that 
neither the scalar mc2 nor the contravariant my? in 

y ” = -  m r E i F 2  + q&+FKA$ (7) general are identical with the energy of a massive 
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